INTRODUCTION

Angiosarcoma is a type of cancer that is extremely rare but highly aggressive and deadly. Although the incidence of this cancer is relatively low, it is one of the most lethal. Patients diagnosed with angiosarcoma typically have an overall survival rate of 15% to 25% within 5 years of diagnosis due to the rapid development of metastatic disease. The majority of angiosarcomas arise in the skin, one of the most common locations for angiosarcoma to be found. Some of the therapies that are currently available, such as the use of the drug famtuzumab, have yielded few positive results. Patients are still desperately in need of safer and more effective treatments. Preclinical studies have demonstrated that oral paclitaxel and encequidar could be a potential clinical treatment option for patients with cutaneous angiosarcoma.

METHODS

In Vitro Cytotoxicity of Paclitaxel in Angiosarcoma Cell Lines

In Vitro Cytotoxicity of Paclitaxel in Angiosarcoma Cell Lines

Dose-Dependent Efficacy

Oral paclitaxel and encequidar (formerly HM30181A), a highly selective, potent, non-absorbable oral paclitaxel, is currently being tested in a pivotal Phase III trial for the treatment of angiosarcoma. Oral paclitaxel and encequidar is currently being tested in a pivotal Phase III trial for the treatment of cutaneous angiosarcoma. The most common locations for angiosarcoma to be found are the skin and subcutaneous tissue. The Two Tiers of Treatment

Oral paclitaxel and encequidar is currently being tested in a pivotal Phase III trial for the treatment of cutaneous angiosarcoma. Paclitaxel is an antineoplastic drug used in the treatment of breast, ovarian, and non-small cell lung cancer. It is a microtubule-stabilizing agent that works by blocking the depolymerization of microtubules and by stabilizing them. Paclitaxel has been shown to have a better safety profile than the intravenous administration of paclitaxel.

RESULTS

In Vitro Cytotoxicity of Paclitaxel in Angiosarcoma Cell Lines

In Vitro Cytotoxicity of Paclitaxel in Angiosarcoma Cell Lines

Figure 1. In Vitro Cytotoxicity of Paclitaxel in Angiosarcoma Cell Lines

In Vitro Cytotoxicity of Paclitaxel in Angiosarcoma Cell Lines

Table 1: Inhibition of angiosarcoma cell proliferation by treatment with paclitaxel.

REFERENCES

CONCLUSIONS

Figure 2. Encequidar: An Oral, Highly Selective, Potent P-Glycoprotein Inhibitor

Figure 3. In Vitro Cytotoxicity of Paclitaxel in Angiosarcoma Cell Lines

Figure 4. In Vitro Cytotoxicity of Paclitaxel in a Human Endothelium Cell Line.

Figure 5. Immunofluorescence Microscopy of Tubulin.

Figure 6. The Effect of Oral Paclitaxel and Encequidar on SVRA221a Tumor Growth in Mice.

Figure 7. The Effect of Oral Paclitaxel and Encequidar on SVRA221a Tumor Growth in Mice.

Figure 8. Angiosarcoma Histopathology.

Table 2: In vitro Cytotoxicity of Paclitaxel.

Table 1: Inhibition of angiosarcoma cell proliferation by treatment with paclitaxel.

Table 2: In vitro Cytotoxicity of Paclitaxel.